Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2benzoxazolo[4,5-*d*]thiazol-2-yl)piperidine-1-carboxamide

De-Jin Hu, Ming Liu, Tong-Hui Huang, Hai-Yang Tu and Ai-dong Zhang*

Key Laboratory of Pesticide & Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: adzhang@mail.ccnu.edu.cn

Received 28 May 2009; accepted 3 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.143; data-to-parameter ratio = 14.9.

In the title molecule, $C_{26}H_{24}N_4O_2S$, the dihedral angle between the isoxazole ring and the adjoining benzene ring is 21.4 (5)°, and between the isoxazole ring and the thiazole ring is 14.3 (4)°. The piperidine ring is in a chair conformation. In the crystal structure, molecules are linked by intermolecular $N-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds into onedimensional chains along [001].

Related literature

The title compound is a potential D1 protease inhibitor. D1 protease is a potential herbicidal target, see: Duff *et al.* (2007). For synthetic details, see: Bond *et al.* (2003); Hu *et al.* (2009).

Experimental

Crystal data

$C_{26}H_{24}N_4O_2S$	a = 22.2844 (6) Å
$M_r = 456.55$	b = 10.1911 (3) Å
Monoclinic, $P2_1/c$	c = 10.2842 (3) Å

$\beta = 102.282 \ (2)^{\circ}$
V = 2282.11 (11) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.966, T_{\rm max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.143$ S = 1.044477 reflections 301 parameters 1 restraint $\mu = 0.17 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.10 \times 0.10 \text{ mm}$

16337 measured reflections 4477 independent reflections 3399 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.093$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C17-H17A\cdots O2^{i}$ N4-H4 $A\cdots O2^{i}$	0.97 0.854 (10)	2.40 2.145 (12)	3.353 (3) 2.976 (2)	167 164 (2)
Symmetry and (i) y	n 1 m 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20672043, 20672044).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2833).

References

- Bond, J. W., Hachisu, Y., Matsuura, T. & Suzuk, K. (2003). Org. Lett. 5, 319–394.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duff, S. M. G., Chen, Y.-C. S., Fabbri, B. J., Yalamanchili, G., Hamper, B. C., Walker, D. M., Brookfiled, F. A., Boyd, E. A., Ashton, M. R., Yarnold, C. J. & Cajacob, C. A. (2007). *Pestic. Biochem. Physiol.* 88, 1–3.
- Hu, D.-J., Liu, S.-F., Huang, T.-H., Tu, H.-Y. & Zhang, A.-D. (2009). *Molecules*, **14**, 1288–1303.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1593 [doi:10.1107/S1600536809021023]

N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2-benzoxazolo[4,5-d]thiazol-2-yl)piperidine-1-carboxamide

D.-J. Hu, M. Liu, T.-H. Huang, H.-Y. Tu and A. Zhang

Comment

We are interested in the title compound as a potential D1 protease inhibitor. D1 protease is a potential herbicidal target (Duff *et al.* 2007). To find the possible D1 inhibitors, virtual screening was performed and a molecule containing isoxazole, thiazole and piperidine rings was designed and synthesized (Hu *et al.* 2009).

The title moleclue (Fig. 1) contains isoxazole, thiazole, piperdine and two benzene rings. The dihedral angle between the tisoxazole ring and the adjoining benzene ring is $21.4 (5)^{\circ}$ and the dihedral angle between the isoxazole and the thiazole rings is $14.3 (4)^{\circ}$. The piperidine ring is in a chair conformation. In the crystal structure, molecules are linked by intermolecular N-H···O and weak C-H···O hydrogen bonds into one-dimensional chains along [001] (see Fig. 2).

Experimental

3-phenyl-6,7-dihydrobenzo[d]isoxazole-4(5H)-one was synthesized by a literature method (Bond *et al.*, 2003). This intermediate (1 mmol) was treated with NBS (2.5 mmol) and NH₄OAc (0.1 mmol) in dry ether to obtain the monobromo ketone and a trace amounts of polybromonated derivatives. The target product was formed by a published procedure (Hu *et al.*, 2009). Slow diffusion of hexane into a ethyl acetate solution of the title compound gave single crystals suitable for X-ray analysis.

Refinement

All H atoms bonded to C atoms were placed in geometrically idealized positions and included in a riding-model approximation with C—H = 0.93 Å (aromatic), 0.97Å (methylene) and 0.98Å (methine), with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom bonded to N4 was found in a difference Fourier map and refined with the restraint of N—H = 0.86 (2)Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 10% probability level.

Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds drawn as dashed lines. Only H atom involved in hydrogen bonds have been shown.

N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2-benzoxazolo[4,5-d]thiazol- 2-yl)piperidine-1-carboxamide

$F_{000} = 960$
$D_{\rm x} = 1.329 {\rm ~Mg~m^{-3}}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 4151 reflections
$\theta = 2.4 - 24.8^{\circ}$
$\mu = 0.17 \text{ mm}^{-1}$
T = 298 K
Block, colorless
$0.20\times0.10\times0.10~mm$

Data collection

Bruker SMART CCD diffractometer	4477 independent reflections
Radiation source: fine-focus sealed tube	3399 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.093$
T = 298 K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -22 \rightarrow 27$
$T_{\min} = 0.966, \ T_{\max} = 0.983$	$k = -12 \rightarrow 12$
16337 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0715P)^2 + 0.1065P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4477 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
301 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.38381 (9)	-0.2002 (2)	0.3431 (2)	0.0421 (5)
C2	0.34151 (12)	-0.2361 (2)	0.4168 (3)	0.0602 (7)
H2	0.3287	-0.1750	0.4723	0.072*
C3	0.31805 (13)	-0.3619 (3)	0.4091 (3)	0.0733 (8)
Н3	0.2894	-0.3846	0.4592	0.088*
C4	0.33650 (12)	-0.4538 (2)	0.3283 (3)	0.0663 (7)
H4	0.3203	-0.5382	0.3227	0.080*
C5	0.37882 (15)	-0.4196 (3)	0.2565 (3)	0.0717 (8)
Н5	0.3920	-0.4819	0.2027	0.086*
C6	0.40231 (12)	-0.2945 (2)	0.2623 (2)	0.0605 (7)
Н6	0.4309	-0.2728	0.2117	0.073*
C7	0.41255 (9)	-0.0693 (2)	0.35423 (19)	0.0398 (5)
C8	0.39483 (9)	0.05256 (19)	0.40386 (19)	0.0384 (5)
С9	0.44192 (9)	0.1341 (2)	0.4002 (2)	0.0424 (5)
C10	0.44851 (11)	0.2734 (2)	0.4429 (2)	0.0520 (6)
H10A	0.4326	0.3303	0.3679	0.062*
H10B	0.4915	0.2941	0.4759	0.062*
C11	0.41283 (11)	0.2956 (2)	0.5528 (2)	0.0528 (6)
H11A	0.4376	0.2671	0.6374	0.063*
H11B	0.4046	0.3885	0.5595	0.063*
C12	0.35307 (10)	0.2212 (2)	0.5246 (2)	0.0453 (5)
C13	0.34382 (9)	0.10585 (19)	0.45761 (19)	0.0388 (5)
C14	0.25309 (10)	0.1164 (2)	0.5099 (2)	0.0449 (5)
C15	0.18845 (10)	0.0794 (2)	0.5137 (2)	0.0475 (5)
H15	0.1860	-0.0166	0.5104	0.057*
C16	0.14331 (10)	0.1320 (2)	0.3913 (2)	0.0491 (6)
H16A	0.1463	0.2269	0.3893	0.059*
H16B	0.1543	0.0979	0.3114	0.059*
C17	0.07811 (10)	0.0935 (3)	0.3925 (2)	0.0556 (6)
H17A	0.0505	0.1317	0.3161	0.067*
H17B	0.0740	-0.0012	0.3863	0.067*
C18	0.10164 (10)	0.0865 (3)	0.6342 (2)	0.0595 (7)
H18A	0.0978	-0.0083	0.6347	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18B	0.0891	0.1204	0.7125	0.071*
C19	0.16795 (10)	0.1235 (3)	0.6394 (2)	0.0553 (6)
H19A	0.1940	0.0830	0.7165	0.066*
H19B	0.1725	0.2179	0.6487	0.066*
C20	0.01279 (9)	0.2148 (2)	0.5258 (2)	0.0433 (5)
C21	-0.07915 (10)	0.3251 (2)	0.4003 (2)	0.0431 (5)
C22	-0.12464 (11)	0.2917 (2)	0.2914 (2)	0.0561 (6)
H22	-0.1158	0.2343	0.2277	0.067*
C23	-0.18266 (12)	0.3426 (3)	0.2767 (3)	0.0740 (8)
H23	-0.2128	0.3189	0.2031	0.089*
C24	-0.19687 (15)	0.4266 (3)	0.3673 (4)	0.0837 (10)
H24	-0.2366	0.4587	0.3577	0.100*
C25	-0.15178 (17)	0.4637 (3)	0.4735 (3)	0.0849 (10)
H25	-0.1610	0.5228	0.5353	0.102*
C26	-0.09237 (13)	0.4143 (3)	0.4903 (2)	0.0650(7)
H26	-0.0619	0.4414	0.5617	0.078*
N1	0.46608 (8)	-0.05766 (18)	0.32118 (18)	0.0496 (5)
N2	0.28756 (7)	0.04708 (17)	0.44870 (17)	0.0424 (4)
N3	0.06154 (8)	0.1393 (2)	0.51501 (17)	0.0559 (5)
N4	-0.02020 (9)	0.2682 (2)	0.41087 (17)	0.0505 (5)
H4A	-0.0118 (11)	0.252 (2)	0.3352 (14)	0.061*
01	0.48560 (7)	0.07301 (15)	0.35047 (15)	0.0512 (4)
O2	-0.00073 (7)	0.23519 (17)	0.63341 (15)	0.0570 (5)
S1	0.28825 (3)	0.25928 (6)	0.58254 (6)	0.0556 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0326 (11)	0.0463 (12)	0.0465 (12)	0.0101 (9)	0.0064 (9)	-0.0035 (9)
C2	0.0577 (15)	0.0463 (14)	0.0844 (18)	0.0019 (11)	0.0329 (14)	-0.0132 (12)
C3	0.0666 (18)	0.0546 (16)	0.107 (2)	-0.0024 (13)	0.0374 (16)	0.0010 (15)
C4	0.0605 (17)	0.0456 (14)	0.0858 (19)	0.0021 (12)	0.0000 (15)	-0.0082 (13)
C5	0.092 (2)	0.0520 (16)	0.0706 (18)	0.0115 (14)	0.0173 (16)	-0.0169 (13)
C6	0.0689 (17)	0.0553 (15)	0.0634 (15)	0.0096 (13)	0.0281 (13)	-0.0095 (12)
C7	0.0318 (11)	0.0474 (12)	0.0407 (11)	0.0080 (9)	0.0086 (9)	0.0010 (9)
C8	0.0329 (11)	0.0428 (11)	0.0398 (11)	0.0057 (9)	0.0088 (9)	0.0019 (9)
C9	0.0374 (12)	0.0468 (12)	0.0440 (12)	0.0053 (10)	0.0113 (9)	0.0051 (9)
C10	0.0477 (14)	0.0475 (13)	0.0621 (14)	-0.0023 (10)	0.0145 (11)	0.0070 (11)
C11	0.0540 (14)	0.0445 (12)	0.0585 (14)	-0.0030 (11)	0.0088 (11)	-0.0057 (10)
C12	0.0455 (13)	0.0439 (12)	0.0486 (12)	0.0052 (10)	0.0144 (10)	-0.0007 (10)
C13	0.0333 (11)	0.0432 (11)	0.0400 (11)	0.0062 (9)	0.0082 (9)	-0.0002 (9)
C14	0.0421 (12)	0.0473 (12)	0.0479 (12)	0.0091 (10)	0.0154 (10)	0.0005 (10)
C15	0.0400 (12)	0.0503 (13)	0.0560 (14)	0.0094 (10)	0.0192 (10)	0.0031 (10)
C16	0.0498 (13)	0.0598 (14)	0.0421 (12)	0.0112 (11)	0.0199 (10)	-0.0044 (10)
C17	0.0438 (13)	0.0783 (17)	0.0466 (13)	0.0153 (12)	0.0141 (10)	-0.0049 (12)
C18	0.0449 (14)	0.0878 (19)	0.0496 (14)	0.0157 (12)	0.0185 (11)	0.0167 (12)
C19	0.0448 (13)	0.0787 (17)	0.0440 (13)	0.0149 (12)	0.0135 (10)	0.0100 (11)
C20	0.0312 (11)	0.0647 (14)	0.0365 (11)	-0.0034 (10)	0.0129 (9)	0.0008 (10)

C21	0.0422 (12)	0.0505 (13)	0.0413 (12)	0.0065 (10)	0.0194 (10)	0.0049 (9)
C22	0.0505 (14)	0.0544 (14)	0.0616 (15)	0.0082 (11)	0.0077 (12)	0.0006 (11)
C23	0.0472 (16)	0.0771 (19)	0.093 (2)	0.0052 (14)	0.0049 (14)	0.0210 (17)
C24	0.0659 (19)	0.106 (2)	0.090 (2)	0.0389 (18)	0.0401 (18)	0.040 (2)
C25	0.111 (3)	0.084 (2)	0.073 (2)	0.0495 (19)	0.051 (2)	0.0113 (16)
C26	0.0785 (19)	0.0678 (16)	0.0510 (15)	0.0202 (14)	0.0193 (13)	-0.0004 (12)
N1	0.0399 (11)	0.0538 (12)	0.0583 (12)	0.0072 (8)	0.0179 (9)	-0.0006 (9)
N2	0.0348 (10)	0.0452 (10)	0.0495 (10)	0.0071 (8)	0.0137 (8)	-0.0033 (8)
N3	0.0403 (11)	0.0930 (15)	0.0373 (10)	0.0200 (10)	0.0149 (8)	0.0040 (10)
N4	0.0423 (11)	0.0793 (14)	0.0336 (10)	0.0132 (9)	0.0160 (8)	-0.0005 (9)
01	0.0378 (8)	0.0556 (10)	0.0638 (10)	0.0034 (7)	0.0193 (7)	0.0046 (7)
O2	0.0468 (9)	0.0918 (13)	0.0377 (8)	0.0095 (8)	0.0210 (7)	0.0037 (8)
S1	0.0570 (4)	0.0477 (4)	0.0684 (4)	0.0070 (3)	0.0272 (3)	-0.0110 (3)

Geometric parameters (Å, °)

C1—C2	1.379 (3)	C15—C16	1.531 (3)
C1—C6	1.389 (3)	С15—Н15	0.9800
C1—C7	1.474 (3)	C16—C17	1.508 (3)
C2—C3	1.380 (3)	C16—H16A	0.9700
С2—Н2	0.9300	С16—Н16В	0.9700
C3—C4	1.371 (4)	C17—N3	1.463 (3)
С3—Н3	0.9300	C17—H17A	0.9700
C4—C5	1.361 (4)	С17—Н17В	0.9700
C4—H4	0.9300	C18—N3	1.458 (3)
C5—C6	1.375 (4)	C18—C19	1.515 (3)
С5—Н5	0.9300	C18—H18A	0.9700
С6—Н6	0.9300	C18—H18B	0.9700
C7—N1	1.313 (2)	C19—H19A	0.9700
С7—С8	1.430 (3)	С19—Н19В	0.9700
C8—C9	1.346 (3)	C20—O2	1.225 (2)
C8—C13	1.470 (3)	C20—N3	1.355 (3)
C9—O1	1.345 (2)	C20—N4	1.365 (3)
C9—C10	1.484 (3)	C21—C26	1.373 (3)
C10-C11	1.531 (3)	C21—C22	1.384 (3)
C10—H10A	0.9700	C21—N4	1.419 (3)
C10—H10B	0.9700	C22—C23	1.371 (4)
C11—C12	1.506 (3)	C22—H22	0.9300
C11—H11A	0.9700	C23—C24	1.352 (4)
C11—H11B	0.9700	С23—Н23	0.9300
C12—C13	1.356 (3)	C24—C25	1.370 (5)
C12—S1	1.720 (2)	C24—H24	0.9300
C13—N2	1.375 (3)	C25—C26	1.393 (4)
C14—N2	1.301 (3)	С25—Н25	0.9300
C14—C15	1.498 (3)	С26—Н26	0.9300
C14—S1	1.744 (2)	N1—O1	1.413 (2)
C15—C19	1.527 (3)	N4—H4A	0.854 (10)
C2—C1—C6	118.0 (2)	C17—C16—H16A	109.3
C2—C1—C7	122.26 (19)	C15—C16—H16A	109.3

C6—C1—C7	119.6 (2)	C17—C16—H16B	109.3
C1—C2—C3	120.6 (2)	C15—C16—H16B	109.3
C1—C2—H2	119.7	H16A—C16—H16B	108.0
С3—С2—Н2	119.7	N3—C17—C16	110.11 (19)
C4—C3—C2	120.7 (3)	N3—C17—H17A	109.6
С4—С3—Н3	119.7	С16—С17—Н17А	109.6
С2—С3—Н3	119.7	N3—C17—H17B	109.6
C5—C4—C3	119.1 (2)	C16—C17—H17B	109.6
С5—С4—Н4	120.5	H17A—C17—H17B	108.2
C3—C4—H4	120.5	N3—C18—C19	110.86 (19)
C4—C5—C6	121.0 (2)	N3—C18—H18A	109.5
С4—С5—Н5	119.5	C19-C18-H18A	109.5
С6—С5—Н5	119.5	N3—C18—H18B	109.5
C5—C6—C1	120.6 (3)	C19-C18-H18B	109.5
С5—С6—Н6	119.7	H18A—C18—H18B	108.1
С1—С6—Н6	119.7	C18—C19—C15	111.3 (2)
N1—C7—C8	110.43 (19)	С18—С19—Н19А	109.4
N1—C7—C1	117.71 (18)	C15-C19-H19A	109.4
C8—C7—C1	131.73 (19)	С18—С19—Н19В	109.4
C9—C8—C7	104.49 (18)	С15—С19—Н19В	109.4
C9—C8—C13	116.91 (19)	H19A—C19—H19B	108.0
C7—C8—C13	138.57 (19)	O2—C20—N3	121.71 (19)
O1—C9—C8	110.89 (18)	O2-C20-N4	121.6 (2)
O1—C9—C10	121.44 (18)	N3—C20—N4	116.71 (18)
C8—C9—C10	127.67 (19)	C26—C21—C22	118.9 (2)
C9—C10—C11	109.03 (18)	C26—C21—N4	123.1 (2)
C9—C10—H10A	109.9	C22—C21—N4	117.95 (19)
C11-C10-H10A	109.9	C23—C22—C21	120.5 (3)
С9—С10—Н10В	109.9	С23—С22—Н22	119.7
C11—C10—H10B	109.9	C21—C22—H22	119.7
H10A-C10-H10B	108.3	C24—C23—C22	121.1 (3)
C12-C11-C10	111.11 (18)	C24—C23—H23	119.4
C12—C11—H11A	109.4	С22—С23—Н23	119.4
C10-C11-H11A	109.4	C23—C24—C25	119.0 (3)
C12—C11—H11B	109.4	C23—C24—H24	120.5
C10—C11—H11B	109.4	C25—C24—H24	120.5
H11A—C11—H11B	108.0	C24—C25—C26	121.0 (3)
C13—C12—C11	124.5 (2)	C24—C25—H25	119.5
C13—C12—S1	108.90 (17)	С26—С25—Н25	119.5
C11—C12—S1	126.36 (16)	C21—C26—C25	119.4 (3)
C12—C13—N2	116.70 (18)	C21—C26—H26	120.3
C12—C13—C8	117.74 (19)	C25—C26—H26	120.3
N2—C13—C8	125.54 (18)	C7—N1—O1	106.56 (16)
N2—C14—C15	123.1 (2)	C14—N2—C13	110.80 (18)
N2—C14—S1	113.77 (16)	C20—N3—C18	119.97 (18)
C15—C14—S1	123.14 (16)	C20—N3—C17	127.24 (18)
C14—C15—C19	114.20 (19)	C18—N3—C17	112.65 (18)
C14—C15—C16	110.96 (18)	C20—N4—C21	123.28 (18)
C19—C15—C16	109.26 (17)	C20—N4—H4A	122.1 (17)

C14—C15—H15	107.4		C21—N4—H4A		112.7 (17)
C19—C15—H15	107.4		C9—01—N1		107.61 (15)
C16—C15—H15	107.4		C12—S1—C14		89.84 (10)
C17—C16—C15	111.60 (19)				
C6—C1—C2—C3	-0.6 (4)		C19—C15—C16—C17	7	-54.2 (3)
C7—C1—C2—C3	-176.5 (2)		C15—C16—C17—N3		56.6 (3)
C1—C2—C3—C4	0.2 (4)		N3-C18-C19-C15		-55.6 (3)
C2—C3—C4—C5	0.6 (4)		C14—C15—C19—C18	3	178.19 (19)
C3—C4—C5—C6	-1.1 (4)		C16—C15—C19—C18	3	53.3 (3)
C4—C5—C6—C1	0.7 (4)		C26—C21—C22—C23	3	-2.8 (4)
C2—C1—C6—C5	0.1 (4)		N4-C21-C22-C23		179.3 (2)
C7—C1—C6—C5	176.1 (2)		C21—C22—C23—C24	1	0.3 (4)
C2-C1-C7-N1	155.8 (2)		C22—C23—C24—C25	5	1.8 (4)
C6—C1—C7—N1	-20.0 (3)		C23—C24—C25—C26	5	-1.3 (5)
C2—C1—C7—C8	-19.6 (3)		C22—C21—C26—C25	5	3.2 (4)
C6—C1—C7—C8	164.5 (2)		N4-C21-C26-C25		-179.0 (2)
N1—C7—C8—C9	-1.3 (2)		C24—C25—C26—C21	l	-1.2 (4)
C1—C7—C8—C9	174.4 (2)		C8—C7—N1—O1		0.9 (2)
N1—C7—C8—C13	-178.7 (2)		C1-C7-N1-01		-175.46 (16)
C1—C7—C8—C13	-3.1 (4)		C15-C14-N2-C13		178.04 (19)
C7—C8—C9—O1	1.2 (2)		S1-C14-N2-C13		0.0 (2)
C13—C8—C9—O1	179.31 (16)		C12—C13—N2—C14		-0.5 (3)
C7—C8—C9—C10	-178.8 (2)		C8—C13—N2—C14		177.82 (19)
C13—C8—C9—C10	-0.7 (3)		O2—C20—N3—C18		-3.7 (3)
O1—C9—C10—C11	-151.80 (19))	N4—C20—N3—C18		175.6 (2)
C8—C9—C10—C11	28.2 (3)		O2—C20—N3—C17		171.6 (2)
C9—C10—C11—C12	-39.1 (2)		N4—C20—N3—C17		-9.1 (4)
C10-C11-C12-C13	30.6 (3)		C19—C18—N3—C20		-125.6 (2)
C10-C11-C12-S1	-155.19 (17)	C19—C18—N3—C17		58.5 (3)
C11—C12—C13—N2	175.8 (2)		C16—C17—N3—C20		125.6 (2)
S1-C12-C13-N2	0.7 (2)		C16—C17—N3—C18		-58.8 (3)
C11—C12—C13—C8	-2.7 (3)		O2-C20-N4-C21		-14.7 (3)
S1-C12-C13-C8	-177.74 (15)	N3-C20-N4-C21		166.0 (2)
C9—C8—C13—C12	-13.7 (3)		C26-C21-N4-C20		48.3 (3)
C7—C8—C13—C12	163.5 (2)		C22-C21-N4-C20		-133.9 (2)
C9—C8—C13—N2	168.03 (19)		C8-C9-01-N1		-0.7 (2)
C7—C8—C13—N2	-14.8 (4)		C10—C9—O1—N1		179.28 (18)
N2-C14-C15-C19	149.7 (2)		C7—N1—O1—C9		-0.1 (2)
S1-C14-C15-C19	-32.5 (3)		C13—C12—S1—C14		-0.54 (16)
N2-C14-C15-C16	-86.3 (3)		C11—C12—S1—C14		-175.5 (2)
S1-C14-C15-C16	91.5 (2)		N2-C14-S1-C12		0.30 (17)
C14—C15—C16—C17	179.03 (18)		C15—C14—S1—C12		-177.70 (19)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C17—H17A····O2 ⁱ					
		0.97	2.40	3.353 (3)	167

Symmetry codes: (i) x, -y+1/2, z-1/2.

Fig. 1

